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[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications
Above 100 GHz: Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS, submitted Feb. 2019.
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[2] T. S. Rappaport et al. “State of the art in 60-GHz integrated circuits and systems for wireless communications,” Proceedings of the IEEE, vol. 99, no. 8, pp. 1390—

1436, Aug. 2011.

[3] Q. Zhao and J. Li, “‘Rain attenuation in millimeter wave ranges,’” in Proc. IEEE Int. Symp. Antennas, Propag. EM Theory, Oct. 2006, pp. 1-4.

[4] mmWave Coalition’s NTIA Comments, Filed Jan. 2019. http://mmwavecoalition.org/mmwave-coalition-millimeter-waves/mmwave-coalitions-ntia-comments/

[29] J. Ma et. al., “Channel performance for indoor and outdoor terahertz wireless links,” APL Photonics, vol. 3, no. 5, pp. 1-13, Feb. 2018. 3
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» Europe: ETSI ISG mWT: studying applications/use cases of millimeter wave spectrum (50 GHz - 300 GHz).
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» ITU-R: WRC-19 Agenda Item 1.15 will identify applications in the frequency range 275-450 GHz,
in accordance with Resolution 767 (WRC-15).

ITLUL -2 Asia-Pacific Telecommunity (APT)
275-1000 GHz
WRC-15
European Conference of Postal and

Report 1ITU-R RA.21789
C1o/2010)

Telecommunications Administrations
(CEPT) 275-1000 GHz

Sharing between the radio astronomy
service and active services in the frequency
range 275-3 000 GHz
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mmWave & THz Applications—the potential for 6G [1]

Robotic Control [27, 28]
Drone Fleet Control [27]

Air quality detection [5]

Sensing Personal health monitoring system [6]

Gesture detection and touchless smartphones [7]
Explosive detection and gas sensing [8]

Wireless Cognition

See in the dark (mmWave Camera) [9]
Imaging High-definition video resolution radar [10]
Terahertz security body scan [11]

Wireless fiber for backhaul [12]
Intra-device radio communication [13]
Connectivity in data centers [14]
Information shower (100 Gbps) [15]

Communication

Positioning Centimeter-level Positioning [9,16]

[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications
Above 100 GHz: Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS, submitted Feb. 2019.
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[17]

https://www.independent.co.uk/life-style/gadgets-and-tech/driverless-cars-travel-technology-government-control-autonomous-cars-a8413301.html

https://smallbiztrends.com/2016/03/delivery-drones-grounded-by-faa.html
https://www.arabianbusiness.com/technology/397057-ai-to-add-182bn-to-uae-economy-by-2035

[171 Chinchali S. et. al., Network Offloading Policies for Cloud Robotics: a Learning-based Approach. arXiv preprint arXiv:1902.05703. 2019 Feb 15.
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[1] http://terasense.com/products/body-scanner/
[17] C. Jordens, F. Rutz, M. Koch: Quality Assurance of Chocolate Products with Terahertz Imaging; European Conference on Non-Destructive Testing, 2006 — Poster 67

[18] M. Aladsani, A. Alkhateeb, and G. C. Trichopoulos, "Leveraging mmWave Imaging and Communications for Simultaneous Localization and Mapping," International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK, May 2019.
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Beamforming and
Spatial Multiplexing [30]

100 Gbps ~ 1 Tbps babkhaul links over rooftops [12]
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On-chip & chip to chip Terahertz communication links [20] Short-range THz wireless connectivity in data centers [2]

[2] http://terapod-project.eu/wp-content/uploads/2018/03/Re-imagining-data-centres-with-THz.pdf

[3] https://www.rfglobalnet.com/doc/fujitsu-develops-low-power-consumption-technology-for-g-0001

[12] T. S. Rappaport, et al., “Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models,” IEEE Trans. on Ant. and Prop.,
vol. 65, no. 12, pp. 6213-6230, Dec. 2017.

[20] S. Abadal, A. Marruedo, et al., "Opportunistic Beamforming in Wireless Network-on-Chip", in Proceedings of the ISCAS ’19, Sapporo, Japan, May 2019.
[30] S. Sun et al. "MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?," in IEEE Comm. Magazine, vol. 52, no. 12, pp. 110-121, De. 2014. 8
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Conducting measurements [21] 140 GHz broadband channel sounder demo
| at Brooklyn 5G Summit [22]
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[217Y. Xing and T. S. Rappaport, “Propagation Measurement System and approach at 140 GHz- Moving to 6G and Above 100 GHz,” IEEE 2018 Global Communications

Conference, Dec. 2018, pp. 1-6.
[22] https://ieeetv.ieee.org/event-showcase/brooklyn5g2018 9
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Free Space Path Loss at 28, 73, 140 GHz
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NYU 140 GHz Channel Sounder System

LO Frequency

Description

IF Frequency
RF Frequency

Upconverter IF input

Downconverter RF input

TX output power
Antenna Gain
Antenna HPBW

Antenna Polarization

22.5 GHz x6 =135 GHz
5-9 GHz (4 GHz bandwidth)
140-144 GHz

-5 dBm typically
10 dBm (damage limit)

-15 dBm typically
0 dBm (damage limit)

0 dBm
25 dBi/ 27 dBi
100/ 8°

Vertical / Horizontal

FSPL verifications following the proposed method
at 28, 73, and 140 GHz [23] (after removing antenna gains)
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As expected, FSPL at 140/73/28 GHz follows the Laws of Physics
and satisfies Friis’ equations with antenna gains removed.

[23] Y. Xing, O. Kanhere, S. Ju, T. S. Rappaport, G. R. MacCartney Jr., “Verification and calibration of antenna cross-polarization discrimination and penetration loss for
millimeter wave communications,” 2018 IEEE 88th Vehicular Technology Conference, Aug. 2018, pp. 1-6.
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DIRECTIONAL ANTENNAS WITH EQUAL APERTURE HAVE MUCH
LESS PATH LOSS AT HIGHER FERQUENCIES ([24] Ch.3 Page 104) 1!

Penetration Loss at 28, 73, and 140 GHz

Frequency Material Thickness | Penetration Loss
(GHz) Under Test (cm) (dB)
Clear glass No.1 12 3.60
= 28 Clear glass No.2 1.2 3.90
Drywall No.1 381 6.80
Clear glass No.3 0.6 1.0
- 73 Clear glass No.4 0.6 7.10
Drywall No.2 145 10.06
Clear glass No.3 0.6 8.24
Clear glass No.4 0.6 9.07
= 14() Drywall No.2 145 1502
Glass door 13 16.20
Drywall with Whiteboard 17.1 16.69

[24] T. S. Rappaport, et. al., “Millimeter Wave Wireless Communications,” Pearson/Prentice Hall c. 2015.
[21]Y. Xing and T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz,” in IEEE 2018 Global

Communications Conference, Dec. 2018, pp. 1-6.

PENETRATION LOSS INCREASES WITH FREQUENCY BUT
THE AMOUNT OF LOSS IS DEPENDENT ON THE MATERIAL [21]
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0 _90 80 -70 -60 _50’ 40 _3380° Comparison between measured data and the dual-lobe Directive
Scattered Power (dBm) Scattering (DS) model at 142 GHz [1,26].

[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications Above 100 GHz:
Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS, submitted Feb. 2019.

[26] S. Ju et al., “Scattering Mechanisms and Modeling for Terahertz Wireless Communications,” 2019 IEEE International Conference on Communications, May. 2019, pp. 1-7.



NYU | zreenicion Penetration Loss Measurement Results NYU

WIRELESS
Penetration Loss at 28, 73, and 140 GHz
Frequency Material Thickness | Penetration Loss
(GHz) Under Test (cm) (dB) Penetration loss increases
Clear glass No.1 1.2 3.60 with frequency but the
= 18 Clear glass No.2 L2 3% amount of loss is dependent
Drywall No.1 38.1 6.80 .
on the material.
Clear glass No.3 0.6 7.70
— 73 Clear glass No.4 0.6 7.10
Drywall No.2 14.5 10.06
Clear glass No.3 0.6 8.24
Clear glass No.4 0.6 907 Penetration loss is constant
= 14() Drywall No.2 145 15.02 over T-R separation distances
Glass door 13 16.20 for co-polarized antennas.
Drywall with Whiteboard 17.1 16.69

[217Y. Xing and T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz,” in IEEE 2018 Global

Communications Conference, Dec. 2018, pp. 1-6.
[23] Y. Xing et al., “Verification and calibration of antenna crosspolarization discrimination and penetration loss for millimeter wave communications,” in 2018 IEEE 88t

VTC, Aug. 2018, pp. 1-6. 13
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» New rulemaking report and order (ET Docket 18-21)
« 21.2 GHz of unlicensed spectrum.
95 GHz - 3 THz for experimental licenses.
* Novel use cases for sub-THz and THz: wireless cognition, imaging, and communications.

« Measurements and channel models are underway at NYU WIRELESS

« This is an important and historic first step at the FCC — perhaps the start of 6G!

14



